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Abbreviations
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SEP	� Standard error of performance
RMSEP	� Root mean square error of prediction
RPD	� Relative prediction deviation
FAs	� Fatty acid species
PLS	� Partial least squares

Introduction

Soybean (Glycine max (L.) Merr) is one of the world’s 
most important crop plants, accounting for 59% of total 
global oilseed production (http://soystats.com/2015-
soystats/, accessed 5-24-2016). Soybean seeds are highly 
prized for the high protein and oil content. A proximate 
composition of whole soybean on a dry matter basis con-
sists of ~40% protein, ~20% lipid, ~35% carbohydrate, and 
~5% ash. These values vary depending on cultivar and spe-
cific growing conditions [1]. The soybean seed lipid pool is 
almost completely (~88%) in the form of triacylglycerols 
[2]. In the USA, soybean oil is the predominant edible oil, 
accounting for 55% of total oil consumption and interna-
tionally soybean oil is also a major consumed edible oil at 
27% of the market (second only to palm oil, http://soystats.
com/2015-soystats/, accessed, 5-24-2016).

The functionality and physical properties of plant oils 
are largely a consequence of their fatty acid composi-
tion. Soybean oil contains five principal fatty acid species: 
~11.6% palmitic (C16:0), ~2.5% stearic (C18:0), ~21.1% 
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oleic (C18:1), ~52.4% linoleic (C18:2), and ~7.1% lino-
lenic (C18:3) acids [3]. The high proportion of oxida-
tively unstable polyunsaturated fatty acids has historically 
resulted in the need for chemical hydrogenation, however 
this practice has become less prevalent in recent years due 
to increasing consumer health concerns surrounding trans 
fatty acids, which are generated as an unavoidable side 
effect during partial hydrogenation [4]. Numerous epide-
miological studies have shown that dietary intake of trans 
fats has strong deleterious effects on cardiovascular health 
due to the impact on low-density lipoprotein (LDL) levels 
in blood serum [5, 6]. These findings ultimately resulted 
in the 2016 ruling by the Food and Drug Administration 
(FDA) that partially hydrogenated oils are not “Gener-
ally Regarded as Safe” (http://www.fda.gov/ accessed 
05-24-2016).

As a result, it is of interest to the market to develop soy-
bean lines with altered seed oil composition that would 
reduce the need for chemical hydrogenation. Several 
genetic methods, including mutagenesis, and biotechnolog-
ical and conventional breeding, have been used to meet this 
goal. This ongoing breeding effort was recently reviewed 
by Gillman & Bilyeu [7] and Medic et al. [8]. It is now pos-
sible to bring about directed, dramatic alterations in fatty 
acid composition of soybean oil. The primary method of 
quantifying fatty acid composition is direct chemical anal-
ysis by gas chromatography (GC) is widely accepted, but 
it is destructive, low-throughput, and is time and resource 
intensive. Consequently, there has also been an increased 
interest in novel, high-throughput, and non-destructive 
methods for quantification of soybean seed fatty acid 
composition.

An alternative technology for measuring the constituents 
of biological materials is provided by near infrared reflec-
tance spectroscopy (NIRS), which relies upon indirect 
measurement of seed chemical components via their inter-
action with infrared radiation [9]. NIRS is highly repro-
ducible, non-destructive, less time-intensive than other 
methods, and has been suggested to have the potential to 
achieve the accuracy of reference analytical tests [10, 11]. 
NIRS calibration models have frequently been developed 
using ground seeds to avoid issues with scattering and non-
homogenous distribution of seed constituents. However, 
grinding of seeds is destructive and has limited applicabil-
ity in early stages of breeding when seeds are frequently 
limited. Other NIRS high-correlation calibration models 
(r ≥  0.92) have been developed for simple seed constitu-
ents (crude protein, oil, etc.) [11, 12].

For soybean fatty acid species, several NIRS calibrations 
have been developed [13–15], which generally show lower 
prediction correlations as compared to crude protein or oil. 
Although several models exist, none is ideal: Certain NIRS 
calibration models had been designed only with ground 

seed samples [15], used a small (<300) number of samples 
[14, 15], used only existing natural diversity with a narrow 
range of phenotypes [14, 16] or were not validated with an 
external sample set [15].

Certain seed compositional changes are too rare in natu-
ral germplasm pools to rely on existing diversity; e.g. the 
US Department of Agriculture-Germplasm Resources 
Information Network (USDA-GRIN) collection contains 
only a single entry which is listed as being either >50% 
oleic acid and only one entry >9% stearic acid (https://
npgsweb.ars-grin.gov/gringlobal/descriptors.aspx, accessed 
05-23-2016). As the breeding goal for stearic acid is cur-
rently >20%, there is a need for precise and accurate NIRS 
calibration. No existing calibration has featured a signifi-
cant range of stearic acid concentrations; they are expected 
to be inaccurate or uninformative when evaluating seeds 
with significantly altered stearic acid composition. For 
oleic acid, bulk and single-seed calibrations have been 
designed to quantify oleic acid specifically [13, 17], but 
these calibrations were not designed to be comprehensive 
for all possible fatty acid breeding goals.

To improve on these methods, we specifically developed 
and characterized several unique soybean germplasm pools 
with one to several mutations in nine distinct fatty acid bio-
synthesis genes (Supplementary Table 1). This set encom-
passes all current major soybean fatty acid breeding targets: 
(1) increased oxidative stability via reduction of linoleic 
and linolenic acid content; (2) limited saturated fat content 
via reduction of palmitic acid; and (3) increased stearic 
acid content for solid fat applications. NIRS calibrations 
were then developed to predict the five major fatty acids 
in bulk, intact seeds in an unprecedentedly broad range of 
soybean seed oil compositional variation.

Experimental Procedures

Plant Germplasm and Growing Conditions

Elevated stearic acid content was represented by a popu-
lation developed from crossing two elevated stearic acid 
lines: ‘A6’ and ‘194D’. Soybean line ‘A6’ has seed stearic 
acid levels of ~28%. ‘A6’ was reported to be a sodium 
azide-induced mutant line [18]. However, it bears a ~6221 
kbp genomic deletion containing the stearoyl acyl carrier 
desaturase isoform c (sacpd-c) gene which is more consist-
ent with radiation-induced mutagenesis [19]. Line ‘194D’ 
is an ethyl methanesulfonate (EMS)-induced ‘Williams 
82’ mutant line that bears a sacpd-c missense mutation in 
an ancestrally invariant amino acid residue (V211E) and 
has ~9–13% seed stearic acid [19]. ‘Williams 82’ typi-
cally has ~3% stearic acid (ARS-GRIN). ‘A6’ and ‘194D’ 
were crossed in 2012 in a reciprocal cross, and advanced 
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to 176-RIL F4:5 populations. No difference was noted in oil 
or stearic acid content between directions of cross (male to 
female), so populations were combined. The F4:5 popula-
tions, along with both parents and conventional controls 
were planted June 11, 2015 in three replicate plots in a ran-
domized complete block design in 2015 at a field location 
near Columbia (Hinkson Bottom, latitude 38.928°N, lon-
gitude −92.352°W). Each plot was composed of 10 seeds 
planted in a 1-foot long row with a 2-foot gap. Row spacing 
was 30 inches. When mature, each plot was harvested in 
bulk.

An additional set of soybean lines grown in a separate 
experiment (high oleic, low linolenic; HOLL) were selected 
to provide a comprehensive NIRS calibration which 
encompasses all other major breeding efforts in soybean 
oil improvement (reduced linolenic acid, reduced palmitic 
acid and increased oleic acid, Supplementary Table  1). 
Mutations of the FAD2-1A locus result in elevation of 
seed oleic acid content from ~20% in wild type lines to 
~34–42% (depending on the severity of the specific muta-
tion); mutations affecting the FAD2-1B locus elevate oleic 
acid content to ~28%. These mutations are synergistic, and 
when both mutations are homozygous, result in seed oleic 
acid levels from 65 to 86% oleic acid; the specific oleic 
acid level is dependent on the allelic combination. Most 
of the additional lines used were homozygous for FAD21-
A and FAD2-1B mutant alleles, and some lines contained 
additional mutant alleles of other fatty acid related genes. 
Breeding lines were developed by crossing parents with 
defined alleles of genes controlling different fatty acids and 
selection with molecular markers in the F2 or F3 genera-
tions for different combinations of seed oil traits. The gene, 
allele, original source, and molecular reference are listed 
for each trait in supplementary Table 1.

Samples of 23 experimental lines were produced at 
two locations: South Farm Research Center near Colum-
bia, Missouri (SF), and the Greenly Memorial Research 
Center near Novelty, Missouri (Novelty). Seeds for another 
16 experimental lines were produced only at South Farm 
Research Center, due to limited availability of seeds. The 
experimental lines were grown in three replicate plots in a 
randomized complete block design, and each plot was com-
posed of 10 seeds planted in 1-foot rows, with row spacing 
of 30ʺ. Each plot was harvested in bulk. For 2015, SF was 
planted June 7 and Novelty was planted June 10.

Two additional samples sets, (1) mutant lines (KK2, 
KK24, M25 and 194D); and (2) eight wild-type cultivars/
breeding lines were also included (supplementary Table 1). 
These samples were produced as single-plot replications 
over a range of locations and years (2012–2015). These 

samples served to ensure the NIRS calibration could also 
quantify non-mutant phenotypes.

Gas Chromatography

Chemicals used in GC analysis were: chloroform–hexane–
methanol (8:5:2, v/v/v, Fisher Scientific, Fair Lawn, NJ, 
USA), methylating reagent (0.25  M methanolic sodium 
methoxide-petroleum ether-ethyl ether, 1:5:2, v/v/v, Grace 
Discovery Sciences, Deerfield, IL, USA), and hexane 
(Sigma-Aldrich, St. Louis, MO, USA).

Analytical values for percent individual fatty 
acids (C16:0, C18:0, C18:1, C18:2 and C18:3) in the 
‘A6’ × ‘194D’ populations were obtained using five single 
seeds from each plot. For all samples except the experimen-
tal lines, seeds were not pooled, but five seeds were indi-
vidually extracted. For experimental lines, three seeds were 
pooled per plot. Individual or pooled seeds were crushed 
and oils extracted in 1  mL of chloroform–hexane–metha-
nol overnight. Derivatization of 150  µL of solvent was 
done with 75 µL of methylating reagent. Single seeds were 
diluted with hexane to 1 mL. An Agilent (Palo Alto, CA, 
USA) series 6890 capillary gas chromatograph fitted with 
a flame ionization detector (275 °C) was used with an AT-
Silar capillary column (Alltech Associates, Deerfield, IL, 
USA). Standard fatty acid mixtures (Animal and Vegetable 
Oil Reference Mixture 6, AOACS, Matreya, LLC, State 
College, PA, USA) were used as reference standards. Val-
ues are expressed as percentage values of the total seed oil.

NIRS Data Collection

Pigmented seedcoats are known to complicate the develop-
ment of accurate NIRS calibrations [11], and pigmented 
seedcoats are not typical of released soybean cultivars, 
except for certain small specialty markets. Therefore, all of 
the samples in this study featured yellow seedcoats.

Approximately 50–100 intact soybean seeds from 
each sample were scanned using the NIRS monochroma-
tor model FOSS 6500 (FOSS North America, Eden Prai-
rie, MN, USA) using the transport quarter cup (dimen-
sion 97 × 55 mm). The NIRS reflectance (R) spectra were 
collected at 2-nm intervals in the NIRS region of 400–
2500 nm at room temperature, and absorbance values were 
calculated as log (1/R). About 30  s were required to col-
lect spectra from each sample. Collected raw NIRS spectra 
were reported using ISIscan® software and exported as text 
files via WinISI® monochromator instrument standardi-
zation IV software (FOSS North America, Eden Prairie, 
MN, USA) for spectral preprocessing and development of 
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calibration models using the UnScrambler® software 6.11 
(CAMO ASA, Trondheim, Norway).

Statistical Analyses

NIRS spectra from 687 soybean samples were collected 
and principal component analysis (PCA) was conducted in 
UnScrambler® to classify the spectral data and determine 
outliers [20]. The 687 samples were randomized in Micro-
soft Office Excel 2010, and separated into two sets: 596 
samples for a calibration set and 93 samples for an external 
validation set (Tables 2 and 3). The NIRS calibration data-
set had 1050 spectral data points (independent variables) 
and 5 individual fatty acid species (FAs, dependent vari-
ables). A partial least squares (PLS) regression [21] method 
was performed to derive calibration models for individual 
FA composition in the UnScrambler® software [22]. PLS 
regression models were obtained on pre-processed NIRS 
spectra as descriptors (X matrix) and the analytical data as 
response data set (Y matrix) for individual fatty acid com-
position. Absorbance spectra from 900 to 2500  nm were 
included in PLS regression analysis due to a higher level 
of noise in the spectral region at the lower wavelengths 
(400–900  nm). For all FAs, the NIRS spectra were pre-
processed first with multiplicative scatter correction (MSC) 
[23], and then with the Savitzky–Golay first derivative [24] 
in the UnScrambler® software, simultaneously. For oleic 
acid/C18:1, most of the spectral variation was in the 1100–
1800 nm region, and NIRS spectra from this spectral region 
were used to improve the calibration by preprocessing the 
raw spectra as described above as well as taking the second 
derivative [23] in the UnScrambler® software. The wave-
length range and spectral preprocessing methods were cho-
sen to optimize the calibration performance, and to mini-
mize error during the cross-validation (CV) analysis. The 
significant PLS factors to build regression models for each 
fatty acids were determined by using segmented CV in 
UnScrambler®, where the 596 samples in the calibration set 
were divided into subgroups or ‘segments’. One segment 
at a time was omitted from the calibration, and the calibra-
tion model was developed with the remaining samples. The 
omitted samples were then predicted, and the entire proce-
dure was repeated until each sample in the calibration set 

was removed and predicted. For each calibration, a small 
number of samples were classified as outliers and were not 
included in the final NIRS calibration. Finally, an optimal 
calibration model was selected by using a significant num-
ber of PLS factors with the default setting of the software 
[25].

The performance of the NIRS calibration models for 
individual FAs was first evaluated by the multiple coeffi-
cient of correlation (r), standard error of calibration (SEC) 
and standard error of cross-validation (SECV) and root 
mean square of error for cross-validation CV [26]. The 
individual FA NIRS models were then tested by predict-
ing external validation samples (n =  93). Each FA NIRS 
model was reported as the coefficient of correlation (r), 
standard error of performance (SEP), root mean square 
error of prediction (RMSEP), and the relative prediction 
deviation (RPD) [27]. RPD is the ratio of the SD for the 
validation samples to the SEP. In general, RPD values >2.4 
indicate the model can be used to predict values for a trait, 
whereas, RPD values <2.4 suggest that the model can be 
used to group seeds according to high and low values for 
the trait [27]. These values (SEC, SECV, RMSEV, SEP and 
RMSEP) were automatically calculated by the UnScram-
bler® software.

Results and Discussion

Table 1 and Fig. 1 show the range of the fatty acid compo-
sition of the soybean accessions used in this study, which 
included both mutant and conventional lines. The calibra-
tion and validation sets had comparable ranges, means, 
and standard deviations for all fatty acids measured. The 
soybean accessions used to generate the NIRS calibration 
represented an extremely broad range of values for all fatty 
acids except palmitic (C16:0) acid. However, palmitic acid 
values in this set were representative of phenotypic varia-
tion in conventional soybean lines as well as common pal-
mitic acid mutants.

Table 2 shows the partial least squares regression statis-
tics for the NIRS calibration. The regression analysis was 
completed by comparing the r and SEC of the calibration 
data set to the r and SEP in the external validation set. 

Table 1   Fatty acid statistics for 
the NIRS calibration set

n number of samples, SD standard deviation, CV coefficient of variation

Fatty acid n mean SD CV Range Difference

C16:0 687 8.91 1.32 0.05 2.78–12.62 9.84

C18:0 687 12.30 6.25 0.24 1.85–28.04 26.19

C18:1 687 34.65 24.62 0.94 16.05–89.44 73.39

C18:2 687 38.43 18.37 0.70 1.24–58.66 57.42

C18:3 687 5.71 1.63 0.06 1.75–9.45 7.11
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Several spectral pretreatments including the first derivative 
(1 Der), second derivative (2 Der), MSC as well as combi-
nations between pretreatments were evaluated. NIRS spec-
tra from both the calibration and validation sets (treated 
with combinations of MSC and 1 Der) had similar corre-
lation coefficients, as well as similar SEC and SEP values 
for each fatty acid. These results suggested that the spectral 
pretreatments were successful in improving the accuracy of 
the PLS regression.

The NIRS calibrations showed a strong correlation 
between GC-measured reference values and NIRS-pre-
dicted values for all fatty acids examined (Table 2). r val-
ues were 0.82, 0.95, 0.98, 0.98, and 0.92 for C16:0, C18:0, 

C18:1, C18:2, and C18:3, respectively (Fig.  2). These 
results were consistent with those obtained from segmented 
CV (Table 2).

In order to determine the applicability and predictabil-
ity of the NIRS calibration models for all fatty acids, we 
tested an external validation set of randomly selected sam-
ples that were not included in the original calibration sets. 
The 93-sample external validation set spanned the same 
fatty acid composition ranges as seen in the calibration set 
(Table  3). The calibrations were successful in determin-
ing fatty acid composition in the external validation set, 
with r values ranging from 0.77, 0.95, 0.98, 0.98, and 0.82 
for C16:0, C18:0, C18:1, C18:2, and C18:3, respectively 

Fig. 1   Histogram distribution of individual fatty acids content (% 
seed oil) in samples from the NIRS calibration (gray) set and in the 
NIRS external validation (orange) set: a C16:0 (palmitic acid), b 

C18:0 (stearic acid), c C18:1 (oleic acid), d C18:2 (linoleic acid) and 
e C18:3 (alpha-linoleic acid) (color figure online)

Table 2   Calibration statistics 
for partial least squares 
regression models for individual 
fatty acids

n number of samples, NIRS near-infrared specgtroscopy, PLS partial least squares, SEC standard error of 
calibration, SECV standard error of cross-validation, RMSECV root mean square error for cross-validation, 
r coefficient of correlation

Fatty acid n Spectral range (nm) NIRS pretreatment PLS factors SEC SECV RMSECV R

C16:0 583 900–2500 MSC; 1 Der 7 0.64 0.67 0.67 0.82

C18:0 588 900–2500 MSC; 1 Der 12 1.78 2.17 2.17 0.95

C18:1 586 1100–1800 MSC; 1 Der; 2 Der 5 3.89 4.47 4.46 0.98

C18:2 591 900–2500 MSC; 1 Der 6 3.61 3.73 3.73 0.98

C18:3 584 900–2500 MSC; 1 Der 6 0.64 0.66 0.66 0.92
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(Table  3). Scatter plots comparing the GC-based fatty 
acid composition and the NIRS-predicted values showed 
a highly similar prediction error, with a very slight bias 
toward overestimating fatty acid content (Fig. 2).

Igne et al. developed methods to predict the major fatty 
acids in whole soybean seeds using a near-infrared trans-
mittance spectroscopy (NITS) instrument (Infratec Grain 
Analyzers 1229 and 1241, FOSS North America, Eden 
Prairie, MN, USA) and two Bruins OmegAnalyzerG 
instruments (Bruins Instruments, Puchheim, Germany) 
with a transmittance module [28]. Raw spectra were col-
lected from a much narrower wavelength band than in the 
current study (850–1048  nm at an increment of 2  nm). 
Igne et  al. used approximately 900 calibration samples, 
and used both linear (partial least squares) and non-linear 

(artificial neutral networks and a least squares support vec-
tor machine) regression models to develop prediction mod-
els for palmitic acid (C16:0) [r2 =  0.97, SEP =  0.64%], 
stearic acid (C18:0) [r2 = 0.85, SEP = 0.30%], oleic acid 
(C18:1) [r2 =  0.59, SEP =  1.62%], linoleic acid (C18:2) 
[r2  =  0.77, SEP  =  1.51%] and linolenic acid (C18:3) 
[r2 = 0.95, SEP = 0.64%] using PLS regression. In com-
parison to the NIRS/PLS regression results, the predic-
tion capability of the NITS spectral derived model has 
lower SEP for all fatty acids, i.e. lower prediction error, 
and higher prediction accuracy. The PLS regression results 
obtained using these two different instruments suggest that 
NITS is efficient in predicting C16:0 and C18:3 fatty acids 
with high accuracy and low error, but were less effective at 
the other fatty acids in soybean seeds.

Fig. 2   Scatter plots of fatty acid content (% seed oil) of the NIRS-
predicted (Y-axis) and analytically determined (GC method; X-axis) 
for a calibration set (black open circles) and for an external valida-
tion set (red closed triangles) for individual fatty acids with their cor-
responding coefficient of correlation (r), standard error of calibration 

(SEC) and partial least squares (PLS) factors for each fatty acid in 
the calibration set: a C16:0 (palmitic acid), b C18:0 (stearic acid), 
c C18:1 (oleic acid), d C18:2 (linoleic acid) and e C18:3 (linolenic 
acid). Each plot shows a linear regression trend line (color figure 
online)

Table 3   External validation 
statistics in NIRS models for 
the estimation of individual 
fatty acids

n number of samples, SD standard deviation, SEP standard error of performance, RMSEP root mean square 
error for prediction, RPD ratio of standard deviation of data to standard error of performance, r coefficient 
of correlation, T Stat t test statistic

Fatty acid n mean range SD SEP RMSEP RPD R T Stat

C16:0 93 8.97 6.58–12.44 1.04 0.66 0.65 1.57 0.77 0.74

C18:0 93 13.45 3.24–27.57 6.17 1.85 1.84 3.34 0.95 −0.38

C18:1 99 33.14 17.26–84.86 23.6 4.27 4.27 5.53 0.98 1.35

C18:2 93 40.34 1.24–58.66 16.41 3.38 3.39 4.85 0.98 1.34

C18:3 93 5.91 2.20–8.78 1.36 0.82 0.81 1.69 0.82 0.60
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These results are most likely due to the limited genetic 
diversity available at the time. Germplasm were available 
which featured excellent phenotypic distributions for pal-
mitic acid (2.89–13.64% seed oil) and linolenic acid (0.89–
11.08% seed oil), but only limited genetically—controlled 
variation was available for oleic acid (19.42–36.91% seed 
oil) and only a very limited range for stearic acid (2.62–
6.81% seed oil). Although useful, the NITS models for 
oleic acid and stearic acid had relatively low coefficients 
of determination. As they did not include samples with ele-
vated stearic acid content or extremely elevated oleic acid 
content (>50%), the NITS models may have greater error 
as compared to our NIRS-based models when predicting 
samples that meet current market demands.

Our NIRS calibrations performed best in predicting 
C18:0, C18:1, C18:2, and C18:3, and the RPD values sug-
gested that these models can be used to predict these fatty 
acids in bulk, intact soybean seeds. Palmitic acid (C16:0) 
predictions had the lowest RPD values, which suggested 
that the calibration could be used to group or classify 
seeds as high or low relative values for the trait, though the 
specific percentage reported is likely to have some asso-
ciated error. We observed a lack of linear response at the 
extremely high end for C18:1 (>75% seed oil), which lim-
ited the ability to differentiate samples via NIRS. A linear 
response for C18:1 was observed below 75%.

The SEPs of the external validation set for most of the 
fatty acids were slightly higher than the SECs, which could 
be due to fewer seeds in the samples and/or error associated 
with GC measurement. RMSECV provides an estimate of 
the magnitude of error expected in independent samples 
using the calibration model; a reliable model should have 
a lower RMSEP as compared to its RMSECV. Finally, a 
paired t test revealed that the fatty acid composition data 
obtained from the GC and NIRS methods were not statisti-
cally different (P > 0.05) for all comparisons (Table 3).

Conclusion

The goal of this study was to develop NIRS calibration 
models for the five major fatty acids in soybean, and we 
demonstrated that NIRS can be used to phenotype the 
major fatty acids in bulk intact seeds in a high-throughput 
manner, which will assist in accelerating soybean breeding 
programs. The robustness and accuracy of predicting fatty 
acid composition using the NIRS models was confirmed by 
means of both CV and external validation. In four of the 
five fatty acids examined, the r value was greater than 0.90. 
The r value for the calibration model of palmitic acid was 
slightly lower than the rest of the fatty acid species at 0.82. 
Phenotyping individual fatty acids in bulk, intact seeds 
using NIRS does not require extensive sample processing 

or the use of harsh chemicals and solvents. As a result, 
sample analysis can be fully automated, non-destructive, 
and non-toxic as compared to chemical analytical meth-
ods. Using the NIRS method, accurate selections and/
or predictions of soybean seeds with favorable fatty acid 
composition can be made directly, rapidly and efficiently. 
It has been proven possible to readily transfer calibrations 
between instruments with similar optical and mechanical 
characteristics [11, 29], and we anticipate the calibrations 
developed in this study can be readily transferred. These 
methods can be used regardless of the specific biotechno-
logical or mutational fatty acid genetic alteration(s). One 
intriguing possibility is the incorporation of these NIRS 
calibrations after the breeding process has concluded; i.e. 
when farmers deposit seeds at an elevator. Although not 
previously practical, the development of rapid, in-line 
NIRS (reviewed in [30]) opens the possibility that grain 
elevators could directly ensure seed purity, provide incen-
tives for farmers who choose to grow value-added seed, 
and potentially introduce constituent-based pricing for soy-
bean seed, rather than on a dry weight basis.
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