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Abstract The mature seeds of soybean (Glycine max L.
Merr) are a valuable source of high-quality edible lipids
and protein. Despite dramatic breeding gains over the past
80 years, soybean oil continues to be oxidatively unstable,
due to a high proportion of polyunsaturated triacylglycer-
ols. Until recently, the majority of soybean oil underwent
partial chemical hydrogenation. Mounting health concerns
over trans fats, however, has increased breeding efforts to
introgress mutant and biotechnological genetic alterations
of soybean oil composition into high-yielding lines. As a
result, there is an ongoing need to characterize fatty acid
composition in a rapid, inexpensive and accurate manner.
Gas chromatography is the most commonly used method,
but near-infrared reflectance spectroscopy (NIRS) can be
calibrated to non-destructively phenotype various seed
compositions accurately and at a high throughput. Here we
detail development of NIRS calibrations using intact seeds
for every major soybean fatty acid breeding goal over an
unprecedented range of oil composition. The NIRS calibra-
tions were shown to be equivalent to destructive chemical
analysis, and incorporation into a soybean phenotyping
operation has the potential to dramatically reduce cost and
accelerate phenotypic analysis.
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Abbreviations

NIRS Near-infrared reflectance spectroscopy
GC Gas chromatography

MS Multiple scatter correction

SEP Standard error of performance
RMSEP Root mean square error of prediction
RPD Relative prediction deviation

FAs Fatty acid species

PLS Partial least squares

Introduction

Soybean (Glycine max (L.) Merr) is one of the world’s
most important crop plants, accounting for 59% of total
global oilseed production (http://soystats.com/2015-
soystats/, accessed 5-24-2016). Soybean seeds are highly
prized for the high protein and oil content. A proximate
composition of whole soybean on a dry matter basis con-
sists of ~40% protein, ~20% lipid, ~35% carbohydrate, and
~5% ash. These values vary depending on cultivar and spe-
cific growing conditions [1]. The soybean seed lipid pool is
almost completely (~88%) in the form of triacylglycerols
[2]. In the USA, soybean oil is the predominant edible oil,
accounting for 55% of total oil consumption and interna-
tionally soybean oil is also a major consumed edible oil at
27% of the market (second only to palm oil, http://soystats.
com/2015-soystats/, accessed, 5-24-2016).

The functionality and physical properties of plant oils
are largely a consequence of their fatty acid composi-
tion. Soybean oil contains five principal fatty acid species:
~11.6% palmitic (C16:0), ~2.5% stearic (C18:0), ~21.1%
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oleic (C18:1), ~52.4% linoleic (C18:2), and ~7.1% lino-
lenic (C18:3) acids [3]. The high proportion of oxida-
tively unstable polyunsaturated fatty acids has historically
resulted in the need for chemical hydrogenation, however
this practice has become less prevalent in recent years due
to increasing consumer health concerns surrounding trans
fatty acids, which are generated as an unavoidable side
effect during partial hydrogenation [4]. Numerous epide-
miological studies have shown that dietary intake of trans
fats has strong deleterious effects on cardiovascular health
due to the impact on low-density lipoprotein (LDL) levels
in blood serum [5, 6]. These findings ultimately resulted
in the 2016 ruling by the Food and Drug Administration
(FDA) that partially hydrogenated oils are not “Gener-
ally Regarded as Safe” (http://www.fda.gov/ accessed
05-24-2016).

As aresult, it is of interest to the market to develop soy-
bean lines with altered seed oil composition that would
reduce the need for chemical hydrogenation. Several
genetic methods, including mutagenesis, and biotechnolog-
ical and conventional breeding, have been used to meet this
goal. This ongoing breeding effort was recently reviewed
by Gillman & Bilyeu [7] and Medic et al. [8]. It is now pos-
sible to bring about directed, dramatic alterations in fatty
acid composition of soybean oil. The primary method of
quantifying fatty acid composition is direct chemical anal-
ysis by gas chromatography (GC) is widely accepted, but
it is destructive, low-throughput, and is time and resource
intensive. Consequently, there has also been an increased
interest in novel, high-throughput, and non-destructive
methods for quantification of soybean seed fatty acid
composition.

An alternative technology for measuring the constituents
of biological materials is provided by near infrared reflec-
tance spectroscopy (NIRS), which relies upon indirect
measurement of seed chemical components via their inter-
action with infrared radiation [9]. NIRS is highly repro-
ducible, non-destructive, less time-intensive than other
methods, and has been suggested to have the potential to
achieve the accuracy of reference analytical tests [10, 11].
NIRS calibration models have frequently been developed
using ground seeds to avoid issues with scattering and non-
homogenous distribution of seed constituents. However,
grinding of seeds is destructive and has limited applicabil-
ity in early stages of breeding when seeds are frequently
limited. Other NIRS high-correlation calibration models
(r = 0.92) have been developed for simple seed constitu-
ents (crude protein, oil, etc.) [11, 12].

For soybean fatty acid species, several NIRS calibrations
have been developed [13-15], which generally show lower
prediction correlations as compared to crude protein or oil.
Although several models exist, none is ideal: Certain NIRS
calibration models had been designed only with ground
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seed samples [15], used a small (<300) number of samples
[14, 15], used only existing natural diversity with a narrow
range of phenotypes [14, 16] or were not validated with an
external sample set [15].

Certain seed compositional changes are too rare in natu-
ral germplasm pools to rely on existing diversity; e.g. the
US Department of Agriculture-Germplasm Resources
Information Network (USDA-GRIN) collection contains
only a single entry which is listed as being either >50%
oleic acid and only one entry >9% stearic acid (https://
npgsweb.ars-grin.gov/gringlobal/descriptors.aspx, accessed
05-23-2016). As the breeding goal for stearic acid is cur-
rently >20%, there is a need for precise and accurate NIRS
calibration. No existing calibration has featured a signifi-
cant range of stearic acid concentrations; they are expected
to be inaccurate or uninformative when evaluating seeds
with significantly altered stearic acid composition. For
oleic acid, bulk and single-seed calibrations have been
designed to quantify oleic acid specifically [13, 17], but
these calibrations were not designed to be comprehensive
for all possible fatty acid breeding goals.

To improve on these methods, we specifically developed
and characterized several unique soybean germplasm pools
with one to several mutations in nine distinct fatty acid bio-
synthesis genes (Supplementary Table 1). This set encom-
passes all current major soybean fatty acid breeding targets:
(1) increased oxidative stability via reduction of linoleic
and linolenic acid content; (2) limited saturated fat content
via reduction of palmitic acid; and (3) increased stearic
acid content for solid fat applications. NIRS calibrations
were then developed to predict the five major fatty acids
in bulk, intact seeds in an unprecedentedly broad range of
soybean seed oil compositional variation.

Experimental Procedures
Plant Germplasm and Growing Conditions

Elevated stearic acid content was represented by a popu-
lation developed from crossing two elevated stearic acid
lines: ‘A6’ and ‘194D’. Soybean line ‘A6’ has seed stearic
acid levels of ~28%. ‘A6’ was reported to be a sodium
azide-induced mutant line [18]. However, it bears a ~6221
kbp genomic deletion containing the stearoyl acyl carrier
desaturase isoform c (sacpd-c) gene which is more consist-
ent with radiation-induced mutagenesis [19]. Line ‘194D’
is an ethyl methanesulfonate (EMS)-induced ‘Williams
82’ mutant line that bears a sacpd-c missense mutation in
an ancestrally invariant amino acid residue (V211E) and
has ~9-13% seed stearic acid [19]. ‘Williams 82’ typi-
cally has ~3% stearic acid (ARS-GRIN). ‘A6’ and ‘194D’
were crossed in 2012 in a reciprocal cross, and advanced
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to 176-RIL F,.5 populations. No difference was noted in oil
or stearic acid content between directions of cross (male to
female), so populations were combined. The F,.5 popula-
tions, along with both parents and conventional controls
were planted June 11, 2015 in three replicate plots in a ran-
domized complete block design in 2015 at a field location
near Columbia (Hinkson Bottom, latitude 38.928°N, lon-
gitude —92.352°W). Each plot was composed of 10 seeds
planted in a 1-foot long row with a 2-foot gap. Row spacing
was 30 inches. When mature, each plot was harvested in
bulk.

An additional set of soybean lines grown in a separate
experiment (high oleic, low linolenic; HOLL) were selected
to provide a comprehensive NIRS calibration which
encompasses all other major breeding efforts in soybean
oil improvement (reduced linolenic acid, reduced palmitic
acid and increased oleic acid, Supplementary Table 1).
Mutations of the FAD2-1A locus result in elevation of
seed oleic acid content from ~20% in wild type lines to
~34-42% (depending on the severity of the specific muta-
tion); mutations affecting the FAD2-1B locus elevate oleic
acid content to ~28%. These mutations are synergistic, and
when both mutations are homozygous, result in seed oleic
acid levels from 65 to 86% oleic acid; the specific oleic
acid level is dependent on the allelic combination. Most
of the additional lines used were homozygous for FAD21-
A and FAD2-1B mutant alleles, and some lines contained
additional mutant alleles of other fatty acid related genes.
Breeding lines were developed by crossing parents with
defined alleles of genes controlling different fatty acids and
selection with molecular markers in the F, or F; genera-
tions for different combinations of seed oil traits. The gene,
allele, original source, and molecular reference are listed
for each trait in supplementary Table 1.

Samples of 23 experimental lines were produced at
two locations: South Farm Research Center near Colum-
bia, Missouri (SF), and the Greenly Memorial Research
Center near Novelty, Missouri (Novelty). Seeds for another
16 experimental lines were produced only at South Farm
Research Center, due to limited availability of seeds. The
experimental lines were grown in three replicate plots in a
randomized complete block design, and each plot was com-
posed of 10 seeds planted in 1-foot rows, with row spacing
of 30”. Each plot was harvested in bulk. For 2015, SF was
planted June 7 and Novelty was planted June 10.

Two additional samples sets, (1) mutant lines (KK2,
KK24, M25 and 194D); and (2) eight wild-type cultivars/
breeding lines were also included (supplementary Table 1).
These samples were produced as single-plot replications
over a range of locations and years (2012-2015). These

samples served to ensure the NIRS calibration could also
quantify non-mutant phenotypes.

Gas Chromatography

Chemicals used in GC analysis were: chloroform—hexane—
methanol (8:5:2, v/v/v, Fisher Scientific, Fair Lawn, NJ,
USA), methylating reagent (0.25 M methanolic sodium
methoxide-petroleum ether-ethyl ether, 1:5:2, v/v/v, Grace
Discovery Sciences, Deerfield, IL, USA), and hexane
(Sigma-Aldrich, St. Louis, MO, USA).

Analytical values for percent individual fatty
acids (C16:0, C18:0, C18:1, C18:2 and C18:3) in the
‘A6’ x ‘194D’ populations were obtained using five single
seeds from each plot. For all samples except the experimen-
tal lines, seeds were not pooled, but five seeds were indi-
vidually extracted. For experimental lines, three seeds were
pooled per plot. Individual or pooled seeds were crushed
and oils extracted in 1 mL of chloroform—hexane—metha-
nol overnight. Derivatization of 150 uL of solvent was
done with 75 uL of methylating reagent. Single seeds were
diluted with hexane to 1 mL. An Agilent (Palo Alto, CA,
USA) series 6890 capillary gas chromatograph fitted with
a flame ionization detector (275 °C) was used with an AT-
Silar capillary column (Alltech Associates, Deerfield, IL,
USA). Standard fatty acid mixtures (Animal and Vegetable
Oil Reference Mixture 6, AOACS, Matreya, LLC, State
College, PA, USA) were used as reference standards. Val-
ues are expressed as percentage values of the total seed oil.

NIRS Data Collection

Pigmented seedcoats are known to complicate the develop-
ment of accurate NIRS calibrations [11], and pigmented
seedcoats are not typical of released soybean cultivars,
except for certain small specialty markets. Therefore, all of
the samples in this study featured yellow seedcoats.
Approximately 50-100 intact soybean seeds from
each sample were scanned using the NIRS monochroma-
tor model FOSS 6500 (FOSS North America, Eden Prai-
rie, MN, USA) using the transport quarter cup (dimen-
sion 97 x 55 mm). The NIRS reflectance (R) spectra were
collected at 2-nm intervals in the NIRS region of 400-
2500 nm at room temperature, and absorbance values were
calculated as log (1/R). About 30 s were required to col-
lect spectra from each sample. Collected raw NIRS spectra
were reported using ISIscan® software and exported as text
files via WinISI® monochromator instrument standardi-
zation IV software (FOSS North America, Eden Prairie,
MN, USA) for spectral preprocessing and development of
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Table 1 Fatty aci.d statistics for Fatty acid n mean SD CV Range Difference
the NIRS calibration set
Cl16:0 687 8.91 1.32 0.05 2.78-12.62 9.84
C18:0 687 12.30 6.25 0.24 1.85-28.04 26.19
C18:1 687 34.65 24.62 0.94 16.05-89.44 73.39
C18:2 687 38.43 18.37 0.70 1.24-58.66 57.42
C18:3 687 5.71 1.63 0.06 1.75-9.45 7.11

n number of samples, SD standard deviation, CV coefficient of variation

calibration models using the UnScrambler® software 6.11
(CAMO ASA, Trondheim, Norway).

Statistical Analyses

NIRS spectra from 687 soybean samples were collected
and principal component analysis (PCA) was conducted in
UnScrambler® to classify the spectral data and determine
outliers [20]. The 687 samples were randomized in Micro-
soft Office Excel 2010, and separated into two sets: 596
samples for a calibration set and 93 samples for an external
validation set (Tables 2 and 3). The NIRS calibration data-
set had 1050 spectral data points (independent variables)
and 5 individual fatty acid species (FAs, dependent vari-
ables). A partial least squares (PLS) regression [21] method
was performed to derive calibration models for individual
FA composition in the UnScrambler® software [22]. PLS
regression models were obtained on pre-processed NIRS
spectra as descriptors (X matrix) and the analytical data as
response data set (¥ matrix) for individual fatty acid com-
position. Absorbance spectra from 900 to 2500 nm were
included in PLS regression analysis due to a higher level
of noise in the spectral region at the lower wavelengths
(400-900 nm). For all FAs, the NIRS spectra were pre-
processed first with multiplicative scatter correction (MSC)
[23], and then with the Savitzky—Golay first derivative [24]
in the UnScrambler® software, simultaneously. For oleic
acid/C18:1, most of the spectral variation was in the 1100—
1800 nm region, and NIRS spectra from this spectral region
were used to improve the calibration by preprocessing the
raw spectra as described above as well as taking the second
derivative [23] in the UnScrambler® software. The wave-
length range and spectral preprocessing methods were cho-
sen to optimize the calibration performance, and to mini-
mize error during the cross-validation (CV) analysis. The
significant PLS factors to build regression models for each
fatty acids were determined by using segmented CV in
UnScrambler®, where the 596 samples in the calibration set
were divided into subgroups or ‘segments’. One segment
at a time was omitted from the calibration, and the calibra-
tion model was developed with the remaining samples. The
omitted samples were then predicted, and the entire proce-
dure was repeated until each sample in the calibration set
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was removed and predicted. For each calibration, a small
number of samples were classified as outliers and were not
included in the final NIRS calibration. Finally, an optimal
calibration model was selected by using a significant num-
ber of PLS factors with the default setting of the software
[25].

The performance of the NIRS calibration models for
individual FAs was first evaluated by the multiple coeffi-
cient of correlation (r), standard error of calibration (SEC)
and standard error of cross-validation (SECV) and root
mean square of error for cross-validation CV [26]. The
individual FA NIRS models were then tested by predict-
ing external validation samples (n = 93). Each FA NIRS
model was reported as the coefficient of correlation (r),
standard error of performance (SEP), root mean square
error of prediction (RMSEP), and the relative prediction
deviation (RPD) [27]. RPD is the ratio of the SD for the
validation samples to the SEP. In general, RPD values >2.4
indicate the model can be used to predict values for a trait,
whereas, RPD values <2.4 suggest that the model can be
used to group seeds according to high and low values for
the trait [27]. These values (SEC, SECV, RMSEYV, SEP and
RMSEP) were automatically calculated by the UnScram-
bler® software.

Results and Discussion

Table 1 and Fig. 1 show the range of the fatty acid compo-
sition of the soybean accessions used in this study, which
included both mutant and conventional lines. The calibra-
tion and validation sets had comparable ranges, means,
and standard deviations for all fatty acids measured. The
soybean accessions used to generate the NIRS calibration
represented an extremely broad range of values for all fatty
acids except palmitic (C16:0) acid. However, palmitic acid
values in this set were representative of phenotypic varia-
tion in conventional soybean lines as well as common pal-
mitic acid mutants.

Table 2 shows the partial least squares regression statis-
tics for the NIRS calibration. The regression analysis was
completed by comparing the r and SEC of the calibration
data set to the r and SEP in the external validation set.
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Table 2 Calibration statistics

; Fatty acid n Spectral range (nm) NIRS pretreatment PLS factors SEC SECV RMSECV R
for partial least squares
regression models for individual 6.0 583 900-2500 MSC; 1 Der 7 0.64 067 067 0.82
fatty acids CI180 588  900-2500 MSC; 1 Der 12 178 217 217 0.95
C18:1 586 1100-1800 MSC; 1 Der; 2 Der 5 389 447 446 0.98
Cl18:2 591 900-2500 MSC; 1 Der 6 361 373 373 0.98
C18:3 584 900-2500 MSC; 1 Der 6 064 0.66 0.66 0.92

n number of samples, NIRS near-infrared specgtroscopy, PLS partial least squares, SEC standard error of
calibration, SECV standard error of cross-validation, RMSECYV root mean square error for cross-validation,

r coefficient of correlation

Several spectral pretreatments including the first derivative
(1 Der), second derivative (2 Der), MSC as well as combi-
nations between pretreatments were evaluated. NIRS spec-
tra from both the calibration and validation sets (treated
with combinations of MSC and 1 Der) had similar corre-
lation coefficients, as well as similar SEC and SEP values
for each fatty acid. These results suggested that the spectral
pretreatments were successful in improving the accuracy of
the PLS regression.

The NIRS calibrations showed a strong correlation
between GC-measured reference values and NIRS-pre-
dicted values for all fatty acids examined (Table 2). r val-
ues were 0.82, 0.95, 0.98, 0.98, and 0.92 for C16:0, C18:0,

C18:1, C18:2, and C18:3, respectively (Fig. 2). These
results were consistent with those obtained from segmented
CV (Table 2).

In order to determine the applicability and predictabil-
ity of the NIRS calibration models for all fatty acids, we
tested an external validation set of randomly selected sam-
ples that were not included in the original calibration sets.
The 93-sample external validation set spanned the same
fatty acid composition ranges as seen in the calibration set
(Table 3). The calibrations were successful in determin-
ing fatty acid composition in the external validation set,
with r values ranging from 0.77, 0.95, 0.98, 0.98, and 0.82
for C16:0, C18:0, C18:1, C18:2, and C18:3, respectively
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(SEC) and partial least squares (PLS) factors for each fatty acid in
the calibration set: a C16:0 (palmitic acid), b C18:0 (stearic acid),
¢ C18:1 (oleic acid), d C18:2 (linoleic acid) and e C18:3 (linolenic
acid). Each plot shows a linear regression trend line (color figure
online)

Table 3 External validation

U Fatty acid n mean range SD SEP RMSEP RPD R T Stat
statistics in NIRS models for

the estimation of individual C16:0 93 897 6581244 104 066 065 157 077 0.74

fatty acids C18:0 93 1345 3242757 617 185 184 334 095  —0.38

cis:1 99 3314  17.26-84.86 236 427 427 553 098 1.35

C18:2 93 40.34 124-58.66 1641 338 339 485 098 1.34

C18:3 93 591 2.20-8.78 136 082 081 169  0.82 0.60

n number of samples, SD standard deviation, SEP standard error of performance, RMSEP root mean square
error for prediction, RPD ratio of standard deviation of data to standard error of performance, r coefficient

of correlation, 7T Stat 7 test statistic

(Table 3). Scatter plots comparing the GC-based fatty
acid composition and the NIRS-predicted values showed
a highly similar prediction error, with a very slight bias
toward overestimating fatty acid content (Fig. 2).

Igne et al. developed methods to predict the major fatty
acids in whole soybean seeds using a near-infrared trans-
mittance spectroscopy (NITS) instrument (Infratec Grain
Analyzers 1229 and 1241, FOSS North America, Eden
Prairie, MN, USA) and two Bruins OmegAnalyzerG
instruments (Bruins Instruments, Puchheim, Germany)
with a transmittance module [28]. Raw spectra were col-
lected from a much narrower wavelength band than in the
current study (850-1048 nm at an increment of 2 nm).
Igne et al. used approximately 900 calibration samples,
and used both linear (partial least squares) and non-linear
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(artificial neutral networks and a least squares support vec-
tor machine) regression models to develop prediction mod-
els for palmitic acid (C16:0) [ = 0.97, SEP = 0.64%],
stearic acid (C18:0) [* = 0.85, SEP = 0.30%], oleic acid
(C18:1) [/? = 0.59, SEP = 1.62%], linoleic acid (C18:2)
[ = 0.77, SEP = 1.51%] and linolenic acid (C18:3)
[ = 0.95, SEP = 0.64%] using PLS regression. In com-
parison to the NIRS/PLS regression results, the predic-
tion capability of the NITS spectral derived model has
lower SEP for all fatty acids, i.e. lower prediction error,
and higher prediction accuracy. The PLS regression results
obtained using these two different instruments suggest that
NITS is efficient in predicting C16:0 and C18:3 fatty acids
with high accuracy and low error, but were less effective at
the other fatty acids in soybean seeds.



J Am Oil Chem Soc (2017) 94:69-76

75

These results are most likely due to the limited genetic
diversity available at the time. Germplasm were available
which featured excellent phenotypic distributions for pal-
mitic acid (2.89-13.64% seed oil) and linolenic acid (0.89—
11.08% seed oil), but only limited genetically—controlled
variation was available for oleic acid (19.42-36.91% seed
oil) and only a very limited range for stearic acid (2.62-
6.81% seed oil). Although useful, the NITS models for
oleic acid and stearic acid had relatively low coefficients
of determination. As they did not include samples with ele-
vated stearic acid content or extremely elevated oleic acid
content (>50%), the NITS models may have greater error
as compared to our NIRS-based models when predicting
samples that meet current market demands.

Our NIRS calibrations performed best in predicting
C18:0, C18:1, C18:2, and C18:3, and the RPD values sug-
gested that these models can be used to predict these fatty
acids in bulk, intact soybean seeds. Palmitic acid (C16:0)
predictions had the lowest RPD values, which suggested
that the calibration could be used to group or classify
seeds as high or low relative values for the trait, though the
specific percentage reported is likely to have some asso-
ciated error. We observed a lack of linear response at the
extremely high end for C18:1 (>75% seed oil), which lim-
ited the ability to differentiate samples via NIRS. A linear
response for C18:1 was observed below 75%.

The SEPs of the external validation set for most of the
fatty acids were slightly higher than the SECs, which could
be due to fewer seeds in the samples and/or error associated
with GC measurement. RMSECYV provides an estimate of
the magnitude of error expected in independent samples
using the calibration model; a reliable model should have
a lower RMSEP as compared to its RMSECV. Finally, a
paired ¢ test revealed that the fatty acid composition data
obtained from the GC and NIRS methods were not statisti-
cally different (P > 0.05) for all comparisons (Table 3).

Conclusion

The goal of this study was to develop NIRS calibration
models for the five major fatty acids in soybean, and we
demonstrated that NIRS can be used to phenotype the
major fatty acids in bulk intact seeds in a high-throughput
manner, which will assist in accelerating soybean breeding
programs. The robustness and accuracy of predicting fatty
acid composition using the NIRS models was confirmed by
means of both CV and external validation. In four of the
five fatty acids examined, the r value was greater than 0.90.
The r value for the calibration model of palmitic acid was
slightly lower than the rest of the fatty acid species at 0.82.
Phenotyping individual fatty acids in bulk, intact seeds
using NIRS does not require extensive sample processing

or the use of harsh chemicals and solvents. As a result,
sample analysis can be fully automated, non-destructive,
and non-toxic as compared to chemical analytical meth-
ods. Using the NIRS method, accurate selections and/
or predictions of soybean seeds with favorable fatty acid
composition can be made directly, rapidly and efficiently.
It has been proven possible to readily transfer calibrations
between instruments with similar optical and mechanical
characteristics [11, 29], and we anticipate the calibrations
developed in this study can be readily transferred. These
methods can be used regardless of the specific biotechno-
logical or mutational fatty acid genetic alteration(s). One
intriguing possibility is the incorporation of these NIRS
calibrations after the breeding process has concluded; i.e.
when farmers deposit seeds at an elevator. Although not
previously practical, the development of rapid, in-line
NIRS (reviewed in [30]) opens the possibility that grain
elevators could directly ensure seed purity, provide incen-
tives for farmers who choose to grow value-added seed,
and potentially introduce constituent-based pricing for soy-
bean seed, rather than on a dry weight basis.
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